
Introductory Tutorial

PCCTS 1.0x

Terence Parr, Hank Dietz, Will Cohen

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907
Fall 1992

parrt@ecn.purdue.edu
hankd@ecn.purdue.edu
cohenw@ecn.purdue.edu

The Purdue Compiler-Construction Tool Set (PCCTS) is a set of public
domain software tools designed to facilitate the implementation of compilers
and other translation systems. In many ways, PCCTS is similar to a highly
integrated version of YACC and LEX; where ANTLR (ANother Tool for
Language Recognition) corresponds to YACC and DLG (DFA-based Lexical
analyzer Generator) functions like LEX. However, PCCTS has many addi-
tional features which make it easier to use for a wide range of translation prob-
lems.

This document introduces the basic functionality of PCCTS by example. The
user need not be familiar with parsing theory or other compiler tools, but any
familiarity reduces the learning curve substantially. The PCCTS reference
manual is a necessary supplement to this tutorial as information here regarding
PCCTS structures and operation is incomplete.

Page 1

PCCTS Introductory Tutorial 1.0x

1. Introduction

PCCTS allows the user to describe languages (e.g. programming language, OS
shell, game, editor); from such a description, a C program is generated that recognizes
and, optionally, translates phrases in that language. The user must specify the following:

(i) How the input stream is to be broken up into lexemes (tokens) which comprise the
vocabulary of the language.

(ii) How the tokens are to be grouped; i.e. what structure/grammar is to be applied to
the token stream.

(iii) C actions which perform a user-specified translation. Along with this specification,
the user must also describe token attributes—objects that actions use to communi-
cate with the lexical analysis phase of translation.

Similarly, this tutorial is broken up into sections on lexical analysis, syntactic analysis,
and actions/translation.

2. Lexical Analysis

Before understanding a phrase in English, one must separate the stream of charac-
ters into a stream of words; e.g. the phrase: ‘‘thisisveryhardtoread’’ accentuates this
fact—recognition cannot easily be done from a character stream, only from word/token
streams.

Compilers and other translators are very strict about this ‘‘tokenization’’ and gen-
erally describe tokens via regular expressions—expressions that describe sets of charac-
ter sequences. The regular expressions are, in fact, language descriptions as well. For
example, hello is a regular expression that recognizes a sequence of five characters;
namely, the word: ‘‘hello’’. To inform PCCTS that ‘‘hello’’ is to be a word in the voca-
bulary of your language, the following description would be placed in your grammar file.

#token LABEL "hello"

where LABEL is some label (C #define) that you want associated with that token.
To test regular expressions in PCCTS, let us form a simple, complete description which
recognizes ‘‘hello’’ (we will use this description as a base for all examples in this sec-
tion):

#header <<#include "charbuf.h">>

<<main() { ANTLR(a(), stdin); }>>

#token WORD "hello"

a : WORD ;

This is a minimal description in that it contains everything needed for PCCTS to generate
an executable (actually, to generate all C files needed for the C compiler to generate an

Page 2

PCCTS Introductory Tutorial 1.0x

executable). The #header <<...>> instruction informs PCCTS that the C code
inside the <<...>> action is necessary to define attributes and to compile the actions
found elsewhere; for this section, we will ignore its significance. The second action
gives a main program that specifies where C is to begin execution. It contains one state-
ment which asks ANTLR to begin parsing at rule a. The third instruction defines a
token hello. The fourth component of this description is a rule definition. Rules
definitions have the form:

rule: alternative 1 | alternative 2 | ... | alternativen ;

where each alternative is a sequence of grammatical structures that are to be matched—
one of possible structures is a simple token reference (WORD, in our case). Therefore,
rule a says, ‘‘match the token identified as WORD on the input stream’’. The C function
generated for rule a asks the lexical analyzer, generated by PCCTS, to collect characters
until it sees a complete token. Each token in the vocabulary is given a unique number
which the lexical analyzer returns to indicate what token was just matched. Function
a() then verifies that the number associated with WORD is indeed returned by the lexi-
cal analyzer.

The above example can be tested via the following sequence of commands:

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -I../h -o t t.c scan.c err.c

The first command generates the parser, t.c, the lexical description, parser.dlg,
and a support file, err.c. The second command converts the lexical description to a C
file that constitutes our scanner (lexical analyzer). The third command compiles all C
files needed to generate the executable (the -I../h option tells the C compiler where
to look for the standard PCCTS include files; you will have to change this to where the
PCCTS include files are located). The output on our UNIX system looks like this
(assuming the example is in file t.g):

% antlr -gk t.g
Antlr parser generator Version 1.06 1989-1992
% dlg -i parser.dlg scan.c
dlg Version 1.0 1989, 1990, 1991
% cc -I../h -o t t.c scan.c err.c

To test the grammar file, run the executable:

% t
hello
%

No error message is generated and t terminates successfully. If a token not in the voca-
bulary of our language is typed, an error message appears. We have only one word in
our vocabulary, and hence, anything other than ‘‘hello, world’’ generates an error.

Page 3

PCCTS Introductory Tutorial 1.0x

% t
bob
invalid token near line 1 (text was ’b’)
invalid token near line 1 (text was ’o’)
invalid token near line 1 (text was ’b’)
invalid token near line 1 (text was ’
ˆDline 1: syntax error at "EOF" missing WORD
%

The first ‘‘invalid token’’ errors are from the scanner, the last message is from the parser
(function a()) indicating that end-of-file was found when a WORD was expected. EOF

was returned by the scanner because bob was ignored and end-of-file appeared immedi-
ately afterwards; EOF is a predefined token in any PCCTS vocabulary.

Adding more tokens to your language’s vocabulary is easy—simply add more
#token definitions. Consider this new example:

#token "\ " <<zzskip();>> /* ignore blanks */
#token "\t" <<zzskip();>> /* ignore tabs */
#token "\n" <<zzline++; zzskip();>> /* ignore newlines */
#token A "apple"
#token P "pear"

This example introduces lexical actions—actions that are executed upon recognition of a
particular regular expression. For most language descriptions, lexical actions are not
used except to tell the scanner to skip a token or continue looking for more characters.
zzskip() is a standard PCCTS function (generally, PCCTS variables/functions/defines
are prefixed with zz to avoid name collisions with user variables) which forces the
scanner to ignore the currently matched token and to try to find another. Essentially, the
first three token definitions here tell the scanner that it is to ignore white space, but to
increment the current line number when it sees a newline. The fourth and fifth
definitions introduce two words into our vocabulary. Notice that only the last two have
labels associated with them. Any #token instruction may give a label, but they are not
necessary. Labels are handy when you want an action to refer to the value (token
number) of a particular token; also, when a regular expression is complicated or confus-
ing, often it is better to use a label throughout your grammar rather than repeating the
regular expression. To illustrate this, we present the following four equivalent partial
PCCTS descriptions:

(i) Repeated use of labels.

#token A "apple"
#token P "pear"

a : A P
| P A
;

Page 4

PCCTS Introductory Tutorial 1.0x

(ii) Repeated use of expressions.

#token "apple"
#token "pear"

a : "apple" "pear"
| "pear" "apple"
;

(iii) Repeated use of implicitly-defined expressions.

a : "apple" "pear"
| "pear" "apple"
;

(iv) Mixed use of labels and expressions.

#token A "apple"
#token P "pear"

a : "apple" P
| "pear" A
;

Each unique token regular-expression string in PCCTS gets its own token number.
Token labels are words that begin with a uppercase letter whereas rules begin with lower-
case letters. Repeating the same token string in a grammar merely refers to the same
token; strings can only appear once in #token definitions, however, as this instruction
attempts to define a new token. An implicitly-defined token is one that is referenced but
that has no formal #token instruction. In fact, we use the #token only when the
expression is long, when a lexical action must be attached, or when a label is required (so
that a C action can refer to it).

Each rule a above indicates that either apple followed by pear is to be
matched or pear followed by apple is to be matched.

Once again, let’s test this vocabulary description with a complete, executable exam-
ple:

#header <<#include "charbuf.h">>

<<main() { ANTLR(a(), stdin); }>>

#token "\ " <<zzskip();>> /* ignore blanks */
#token "\t" <<zzskip();>> /* ignore tabs */
#token "\n" <<zzline++; zzskip();>> /* ignore newlines */

a : "apple" "pear"
| "pear" "apple"
;

To build the executable, we proceed as before:

Page 5

PCCTS Introductory Tutorial 1.0x

% antlr -gk t.g
Antlr parser generator Version 1.06 1989-1992
% dlg -i parser.dlg scan.c
dlg Version 1.0 1989, 1990, 1991
% cc -g -I../h -o t t.c scan.c err.c

To test the example, type:

% t
apple

pear
%

No error is reported due to the validity of the input. Note that the newline and the spaces
were ignored because of the zzskip() actions associated with our token definitions
for white space. To ensure that t is actually doing something useful, try:

% t
apple apple
line 2: syntax error at "apple" missing pear
ˆD%

PCCTS generates parsers that automatically report errors and try to resynchronize the
parser; hence, in this case, a control-D (ˆD) is necessary to terminate the program
because t is looking for another token with which to resynchronize. Because of the
zzline++ statement in the action for newline, the error is correctly reported on line 2.

The regular expressions used in the above examples are simple and do not use any
of the meta-characters or regular expression operators. Before presenting a more realis-
tic example, we illustrate the use of some useful regular expression meta-characters (for a
complete description see PCCTS documentation):

@ EOF character

\t tab character

\n newline character

\c character escape; used to obtain actual character for meta-characters

(e) keep expression e as an indivisible group

[c] match one character from list c

[x-y]
match one character from range x to y

˜[c]match one character not in list c

{e} expression e is optional

e* match zero or more of e

e+ match one or more of e

Page 6

PCCTS Introductory Tutorial 1.0x

e|f match either expression e or f

Naturally, the above operators and meta-characters can be used in many combinations to
produce very complicated expressions. To illustrate more complex expressions, we
define the vocabulary of a calculator (ignoring white space for the moment).

#token NUM "[0-9]+"
#token VAR "[a-zA-Z][a-zA-Z0-9]*"
#token "\("
#token "\)"
#token "\+"
#token "\-"
#token "*"
#token "/"

A number is defined as a sequence of one or more decimal digits. Variables begin with
an upper or lowercase letter, but can otherwise contain digits as well; note that * is used
rather than + for variables because + would force VAR to recognize at least two char-
acters. This calculator has some tokens in its vocabulary that are identical to those of the
regular expressions, so these must be escaped to tell the scanner to look for those actual
characters. To create an executable, we form a grammar which accepts one of the words
in the vocabulary:

#header <<#include "charbuf.h">>

<<main() { ANTLR(a(), stdin); }>>

#token "\ " <<zzskip();>> /* ignore blanks */
#token "\t" <<zzskip();>> /* ignore tabs */
#token "\n" <<zzline++; zzskip();>> /* ignore newlines */

#token NUM "[0-9]+"
#token VAR "[a-zA-Z][a-zA-Z0-9]*"
#token "\("
#token "\)"
#token "\+"
#token "\-"
#token "*"
#token "/"

a : NUM | VAR | "\(" | "\)" | "\+" | "\-" | "*" | "/" ;

As before, we create the executable with (assuming the example is in t.g):

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -g -I../h -o t t.c scan.c err.c

The executable, t, will recognize any one token from our vocabulary. The next section
discusses how one employs rules to specify valid, structured sequences; i.e. how one
defines the syntax of a language.

Page 7

PCCTS Introductory Tutorial 1.0x

3. Syntactic Analysis

The syntax of a language is the grammatical structure which summarizes the set of
valid phrases in that language. Because one cannot normally delineate all possible sen-
tences, languages are described via a set of rules which obey the laws of a meta-
language, which is literally a ‘‘language to describe languages’’ just as the syntax of reg-
ular expressions represents a language. This section describes the format of a PCCTS
language description—the syntax of PCCTS rules and how they may be used to impose a
structure upon a stream of input tokens.

The basic template used to build a grammar is:

#header action
action(s) and/or #token definition(s)
rule(s)
action(s) and/or #token definition(s)

To compile, all grammars must define a number of things inside the #header action;
this instruction is not optional and must appear first in your file. The rest of the file is
basically a sequence of user actions, token and rule definitions—except that actions, not
contained within rules, must be placed before or after the rule definitions.

Rules have the basic form:

rule: alternative 1 | alternative 2 | ... | alternativen ;

where alternativei is a sequence of the following elements:

token
Match token on the input stream.

rule Visit rule and match whatever is specified.

action
Execute C action.

(a 1 | a 2 | ... | an)

Introduce a subrule—match one ai.

{a 1 | a 2 | ... | an}

Introduce an optional subrule; match one ai or none.

(a 1 | a 2 | ... | an)*

Conditionally match any sequence of ai’s.

(a 1 | a 2 | ... | an)+

Match any sequence of ai’s.

Examples of rule definitions are:

w : WORD ("," WORD)*
;

Page 8

PCCTS Introductory Tutorial 1.0x

where rule w matches a list of comma-separated WORD’s. The ("," WORD)* con-
struction says match zero or more "," WORD sequences. Consider,

st : "if" expr "then" st {"else" st} ";"
| WORD ":=" expr
| "begin" (st ";")+ "end"
;

where expr is some rule that matches an arithmetic expression. Rule st matches
statements such as:

if expr 1 then begin
i := expr 2;
j := expr 3;

end
else
k := expr 4;

The first alternative has an optional subrule that matches an else-clause if it exists.
The third alternative matches one or more semicolon-delimited statements, which are
enclosed in begin and end. Let’s examine the description of a simple expression.

e : e1 (("\+" | "\-") e1)*
;

e1 : WORD
| INT
;

Rule e matches simple expressions with only plus and minus as operators; e.g. a+3-b

or a. Note that we have nested the ("\+" | "\-") subrule within the (...)*

subrule.

Let’s build a complete PCCTS language description by extending the expression
example. Rules to handle multiplication and division will be added as well as token
definitions to ignore white space etc...:

Page 9

PCCTS Introductory Tutorial 1.0x

#header <<#include "charbuf.h">>

<<main() { ANTLR(calc(), stdin); }>>

#token "[\ \t]" <<zzskip();>> /* ignore blanks, tabs */
#token "\n" <<zzline++;>> /* ignore newlines */
#token INT "[0-9]+"
#token FLOAT "[0-9]+ {. [0-9]+}"

calc: (e "\n")* "@"
;

e : e1 (("\+" | "\-") e1)*
;

e1 : e2 (("*" | "/") e2)*
;

e2 : INT
| FLOAT
;

Note that newlines are no longer to be ignored, hence, the zzskip() function call has
been removed from its lexical action. Our language is a set of expressions terminated by
newlines followed by end-of-file (@ is a predefined lexical meta-symbol referring to end-
of-file). Without actions, testing this grammar is uninteresting because no output is gen-
erated (unless, of course, an invalid expression is given). Therefore, let us place an
action among the rule elements to generate some output. Augment rule calc as fol-
lows:

calc: (e "\n" <<printf("found expression\n");>>)* "@"
;

Essentially, we have added C code to print out a brief message after an expression-
newline pair has been encountered. Create the executable, t, as before with:

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -I../h -o t t.c scan.c err.c

Test the program via a few simple expressions:

% t
3+4*5
found expression
3.15 / 6 - 2.1
found expression
ˆD%

This example grammar is not recursive; i.e. no rule references another rule that directly
or indirectly returns to itself. But, recursion is a very powerful tool. It allows the con-
cept of self-similarity. In other words, structures in which some subcomponents are

Page 10

PCCTS Introductory Tutorial 1.0x

similar to the outer structure. Pascal has several self-similar constructs: record field
definitions, procedure definitions, expressions, and type definitions to name a few.

To illustrate recursive grammars, we extend the above expression example to allow
parenthesized subexpressions such as (3+4)*7.

e2 : INT
| FLOAT
| "\(" e "\)"
;

Placing the subexpression construct at the lowest recursion level makes it have the
highest precedence because of the nature of top-down, depth-first parsing. To see this,
consider the parse tree for (3+4)*5 (beginning at rule e):

e

e2

e3 * 5

e()

3 + 4

Clearly, 3+4 must be evaluated before the * for a valid result; this is precisely a
depth-first evaluation of the parse tree (which PCCTS parsers do naturally). The deeper
the recursive nesting, the higher the precedence. Extending the input expression to
(3+4)*(5-6) yields:

e3

e()

3 + 4

e3

e()

5 - 6

e

e2

*

Again, both operands of the * must be evaluated before it can proceed.

As another example of recursive definitions, consider type definitions for a Pascal-
like language. Types look like:

Page 11

PCCTS Introductory Tutorial 1.0x

char
integer
array [5] of char
array [100] of array [20] of integer

A grammar similar to the following could be used:

type: "char"
| "integer"
| "array" "\[" INT "\]" "of" type
;

The recursive invocation of type by the array alternative effectively allows chains
of array specifications. The parse tree for

array [100] of array [20] of integer

looks like:

[array 20] of type

type[array 100] of

type

integer

In this case, we are less interested in precedence and more interested in allowing chains
of array specifications.

In general, recursion and repetition constructs such as (...)+ are needed to avoid
delineating all possible phrases in a language. Grammars are descriptions of the patterns
found among the phrases of a particular language just as Σ notation summarizes an
infinite series.

The recognition of input languages, via the use of grammars, performs two tasks: it
ensures phrase validity and directs translation to an output language. The next section
demonstrates how actions, embedded among the grammar elements, can be used to effect
a translation.

4. Translation

Given a grammar, PCCTS constructs a recognizer for phrases in that input
language. No translation from input to output is performed. User actions must be sup-
plied in the correct positions to generate output. Translation occurs when an action pro-
duces output which is a function of the input phrase. Actions have access to input phrase
token values through an abstraction called an attribute. These attributes are user-defined

Page 12

PCCTS Introductory Tutorial 1.0x

types and can be as simple as the text associated with a token.

This section introduces the notion of an attribute as a means of communicating with
the lexical analyzer and presents a number of examples that explain how and where
actions can be used to generate output.

4.1. Attributes

Attributes are objects associated with all rules and rule elements, but we will only
concern ourselves here with attributes associated with token and rule references. Attri-
butes are referenced in actions with the notation $i where i indicates that the attribute for
the i th token in that production is desired. Attributes are run-time objects and have no
value until run-time. They are generally used to access the actual text (or a function of
the text) of the tokens matched on the input stream. The set of all tokens defines the
vocabulary of the input language. The term ‘‘token’’ collectively refers to the token type
(an integer that identifies it as part of the vocabulary) and the token text (the actual string
that matched the regular expression for the token type).

Before illustrating attributes, we begin with an example. The vocabulary of an
input language (known a priori) may be the set { WORD, "begin", INT }, which is
the set of integer token types. The text associated with a token type is only known at
parser run-time because it depends on the input characters. Let us say that the grammati-
cal structure of the language is any sequence of tokens in the vocabulary (ignoring white
space); then, a valid sentence could be:

begin hello 34 13 bob

The parser would see a token stream of tuples of the form (token type, token text):

(begin, begin)
(WORD, hello)
(INT, 34)
(INT, 13)
(WORD, bob)

A different input sentence, with the same sequence of token types is:

begin hi 2 99 ptr

which would yield the same sequence of token types, but a different set of token text:

(begin, begin)
(WORD, hi)
(INT, 2)
(INT, 99)
(WORD, ford)

The grammar might look like:

Page 13

PCCTS Introductory Tutorial 1.0x

a : (WORD | "begin" | INT)+
;

Only the token types are referenced in the grammar as they describe the structure of the
language and are a shorthand notation for the set of valid input sentences. Obviously,
one could not delineate all possible sentences as there are infinitely many. For a PCCTS
description to perform a translation that is specific to the particular input, actions must
access the text of the input tokens, not just the token type. Attributes are provided to pro-
vide access to the text (or some function thereof) of an input token. To illustrate this, we
give a complete example and then, later, describe the particulars:

#header <<#include "charptr.h">>

<<main() { ANTLR(a(), stdin); }>>

#token "[\ \t]" <<zzskip();>>
#token "\n" <<zzline++; zzskip();>>

a : (WORD <<printf(" %s", $1);>>
| "begin" <<printf(" begin");>>
| INT <<printf(" %s", $1);>>
)+

;

#token WORD "[a-z]+"
#token INT "[0-9]+"

This example defines attributes to be strings representing what was found on the input
stream and prints the stream of tokens back out. In other words, attributes are merely a
copy of the words found; the mapping from token/lexeme to attribute is an identity map-
ping (do nothing but copy). For the moment, concentrate on the actions. $1 refers to
the attribute of the first item in the production in which the action occurs; in this case,
only one item appears per production. Note that the action for the "begin" token does
not need to refer to its attribute as it will always be begin. The rest of this section
describes the particulars needed to understand everything else in the example.

PCCTS requires that the user define the data type or structure of the attributes as
well as specify how to convert from lexemes to attributes. The type is always defined by
a C typedef named Attrib and must be defined in the action associated with the
#header instruction. For example, if one wishes the attribute for a token to be simple
integers, the following is a sufficient type definition:

#header <<typedef int Attrib;>>

However, this does not tell PCCTS how to convert a token to an attribute. This is accom-
plished with a function called zzcr_attr() which defines the value of an attribute
given complete information about a lexeme (token number and associated text). It has
the general form:

Page 14

PCCTS Introductory Tutorial 1.0x

void
zzcr_attr(a,token,text)
Attrib *a;
int token;
char *text;
{

/* *a = function(token, text); */
}

where a points to an attribute created by PCCTS at run-time. The user simply has to
assign a value to *a. In our case, we will use a macro version to set our attributes to the
integer value of the input:

#define zzcr_attr(a,tok,txt) {*(a) = atoi(txt);}

This specifies that whenever a token is matched on the input stream by the parser, an
attribute of type int is to be created and assigned the result of atoi(text) where text
is the character string matched for the token. The attribute is then made available as $i

to actions in the production that matched the token. For example,

#header <<
typedef int Attrib;
#define zzcr_attr(a,tok,txt) {*(a) = atoi(txt);}

>>

<<main() { ANTLR(a(), stdin); }>>

#token "[\ \t]" <<zzskip();>>
#token "\n" <<zzline++; zzskip();>>

a : "hi" "[0-9]+" <<printf("$1, $2 are %d, %d\n", $1, $2);>>
;

$1 refers to the first token in the alternative, "hi"; similarly, $2 refers to the the
second token, "[0-9]+". When executed, the executable t (created as before)
yields:

% t
hi 34
$1, $2 are 0, 34
%

where atoi() of a non-numeric string is 0, but the text 34 gets converted to an
integer (binary word) version of 34 and printed back out as a number.

The token type can be tested to ensure that it is an integer before applying the
atoi() function via:

#header <<
typedef int Attrib;
#define zzcr_attr(a,tok,txt) {if (tok==INT) *(a) = atoi(txt);}

>>

Page 15

PCCTS Introductory Tutorial 1.0x

where INT is defined to be "[0-9]+". This defines an attribute for all INT tokens
found on the input stream. Other tokens have undefined attributes.

Attributes can have multiple elements or assume one of many values. For example,
we can extend the above example to handle FLOAT tokens as well:

#header <<typedef union { int ival; float fval; } Attrib;>>

<<
void
zzcr_attr(a,token,text)
Attrib *a;
int token;
char *text;
{

switch (token)
{

case INT : (a)->ival = atoi(text); break;
case FLOAT : (a)->fval = atof(text); break;

}
}
>>

The typedef specifies that attributes are integer or floating point values. When the
regular expression for a floating point number (integer number) is matched on the input
stream, zzcr_attr() converts the string of characters representing that number to a
C float (int).

Attributes can become even more complicated, but typically, attributes are merely a
copy of the text found on the input stream. A standard PCCTS attribute definition is
available as charbuf.h and is defined as follows:

/* PCCTS attribute -- constant width text */
#ifndef D_TextSize
#define D_TextSize 30
#endif

typedef struct { char text[D_TextSize]; } Attrib;

#define zzcr_attr(a,tok,t) strncpy((a)->text, t, D_TextSize-1);

These attributes are referred to by $i.text in actions.

Each alternative begins a new sequence of $i’s and from an enclosing scope/level,
entire subules are counted as one unit. This is best explained with an example:

a : A B (C D)+ E
| F G
;

From an action after token E, A is $1, B is $2, the entire subrule (C D) is $3,
and E is $4; C and D are inaccessible from outside the scope of the subrule. From an
action inside the subrule just after the token D, C is $1 and D is $2. In alternative

Page 16

PCCTS Introductory Tutorial 1.0x

two from an action after G, F is $1 and F is $2. Attributes have a scoping just like
variables in a programming langauage.

Attributes are a means of communicating with the lexical analyzer. Actions may
use these attributes to provide a translation. The next section utilizes the concepts
presented here to build translators.

4.2. Actions

Actions are rule elements just like token references, but perform a different func-
tion. Token references indicate that a particular token is to be matched on the input
stream at that point in the parse. Actions indicate that this action is to be performed at
that point in the parse, immediately following the preceding token match. For example,

a : A <<action 1>> B ;
| (C)+ <<action 2>>
;

action 1 is executed after the parser has found an A, but before it has found a B. action 2 is
executed only after a sequence of one or more C’s has been found.

As a more concrete example, we augment the above calc example to print some-
thing more useful than found expression:

calc: (e "\n" <<printf("\n");>>)* "@"
;

e : e1
(("\+" <<printf(" add");>>

| "\-" <<printf(" sub");>>
)
e1

)*
;

e1 : e2
(("*" <<printf(" mult");>>

| "/" <<printf(" div");>>
)
e2

)*
;

e2 : INT <<printf(" INT");>>
| FLOAT <<printf(" FLOAT");>>
;

Essentially, we have added C code to print out the operand types and operators. Create
the executable, t, as before with

Page 17

PCCTS Introductory Tutorial 1.0x

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -I../h -o t t.c scan.c err.c

Test the program via a few simple expressions:

% t
3+4*5
INT add INT mult INT
3.15 / 6 - 2.1
FLOAT div INT sub FLOAT
ˆD%

Now, let’s use the attributes to generate code for a simple reverse-polish stack machine
whose operations are defined as follows:

push opnd

Push opnd onto the stack.

print

Print the value of the top of stack; POP the value off the stack.

add

PUSH(POP + POP)

sub

a := POP
b := POP
PUSH(b - a)

mult

PUSH(POP * POP)

div

a := POP
b := POP
PUSH(b / a)

Modify the rules as follows:

#header <<#include "charbuf.h">>

<<main() { ANTLR(calc(), stdin); }>>

#token "[\ \t]" <<zzskip();>> /* ignore blanks, tabs */
#token "\n" <<zzline++;>> /* ignore newlines */
#token INT "[0-9]+"
#token FLOAT "[0-9]+ {. [0-9]+}"

Page 18

PCCTS Introductory Tutorial 1.0x

calc: (e "\n" <<printf("\tprint\n");>>)* "@"
;

e : <<char *op;>>
e1
(("\+" <<op="\tadd\n";>>

| "\-" <<op="\tsub\n";>>
)
e1
<<printf("%s", op);>>

)*
;

e1 : <<char *op;>>
e2
(("*" <<op="\tmult\n";>>

| "/" <<op="\tdiv\n";>>
)
e2
<<printf("%s", op);>>

)*
;

e2 : INT <<printf("\tpush %s\n", $1.text);>>
| FLOAT <<printf("\tpush %s\n", $1.text);>>
;

Page 19

PCCTS Introductory Tutorial 1.0x

Table of Contents

1. Introduction ... 2

2. Lexical Analysis ... 2

3. Syntactic Analysis ... 8

4. Translation .. 12

4.1. Attributes .. 13

4.2. Actions .. 17

